The Cauchy Problem for Schrödinger Equations with Time-Dependent Hamiltonian
Cicognani, Massimo
Bruno Pini Mathematical Analysis Seminar, (2014), / Harvested from Bruno Pini Mathematical Analysis Seminar

We consider the Cauchy problem for a Schrödinger equation with an Hamiltonian depending also on the time variable and that may vanish at t = 0. We find optimal Levi conditions for well-posedness in Sobolev and Gevrey spaces.

Publié le : 2014-01-01
DOI : https://doi.org/10.6092/issn.2240-2829/4717
@article{4717,
     title = {The Cauchy Problem for Schr\"odinger Equations with Time-Dependent Hamiltonian},
     journal = {Bruno Pini Mathematical Analysis Seminar},
     year = {2014},
     doi = {10.6092/issn.2240-2829/4717},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/4717}
}
Cicognani, Massimo. The Cauchy Problem for Schrödinger Equations with Time-Dependent Hamiltonian. Bruno Pini Mathematical Analysis Seminar,  (2014), . doi : 10.6092/issn.2240-2829/4717. http://gdmltest.u-ga.fr/item/4717/