Infinitely many solutions for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions
Heidarkhani, Shapour ; Araujo, Anderson Luis Albuquerque de ; Salari, Amjad
Boletim da Sociedade Paranaense de Matemática, Tome 38 (2019), / Harvested from Portal de Periódicos da UEM

In this article we will provide new multiplicity results of the solutions for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions. We investigate the existence of infinitely many solutions for perturbed nonlocal problems with variable exponent and nonhomogeneous Neumann conditions. The approach is based on variational methods and critical point theory.

Publié le : 2019-01-01
DOI : https://doi.org/10.5269/bspm.v38i4.41664
@article{41664,
     title = {Infinitely many solutions for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {38},
     year = {2019},
     doi = {10.5269/bspm.v38i4.41664},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/41664}
}
Heidarkhani, Shapour; Araujo, Anderson Luis Albuquerque de; Salari, Amjad. Infinitely many solutions for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions. Boletim da Sociedade Paranaense de Matemática, Tome 38 (2019) . doi : 10.5269/bspm.v38i4.41664. http://gdmltest.u-ga.fr/item/41664/