New solvability conditions for congruence$ $ax \equiv b \pmod{n}$
Porubský, Štefan
Tatra Mountains Mathematical Publications, Tome 62 (2015), / Harvested from Mathematical Institute

In \cite{2} it is proved that congruence $ax \equiv b \pmod{n}$ has a solution with $ t = gcd(x_0, n)$ if and only if $gcd (a; \frac{n}{t} )= gcd (\frac{b}{t},  \frac{n}{t} )$ thereby generalizing the result for $t = 1$ proved in \cite{1}, \cite{5}. We show that this generalized result follows from that given in \cite{1}, \cite{5}. Then we shall analyze this result from the point of view of a weaker condition that $gcd (a, \frac{n}{t}) |   gcd (\frac{b}{t}, \frac{n}{t} )$. We prove that given integers $a, b, n \geq 1$ and  $t \geq 1$, congruence $ax \equiv b \pmod{n}$ has a solution $x_0$ with $t$ dividing $gcd(x_0, n)$ if and only if $gcd (a,\frac{n}{t} | gcd (\frac{b}{t}, \frac{n}{t} )$.

Publié le : 2015-01-01
DOI : https://doi.org/10.2478/tatra.v64i0.402
@article{402,
     title = {New solvability conditions for congruence$ $ax \equiv b \pmod{n}$},
     journal = {Tatra Mountains Mathematical Publications},
     volume = {62},
     year = {2015},
     doi = {10.2478/tatra.v64i0.402},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/402}
}
Porubský, Štefan. New solvability conditions for congruence$ $ax \equiv b \pmod{n}$. Tatra Mountains Mathematical Publications, Tome 62 (2015) . doi : 10.2478/tatra.v64i0.402. http://gdmltest.u-ga.fr/item/402/