Variations on statistical quasi Cauchy sequences
Cakalli, Huseyin
Boletim da Sociedade Paranaense de Matemática, Tome 38 (2019), / Harvested from Portal de Periódicos da UEM

In this paper, we introduce a concept of statistically $p$-quasi-Cauchyness of a real sequence in the sense that a sequence $(\alpha_{k})$ is statistically $p$-quasi-Cauchy if $\lim_{n\rightarrow\infty}\frac{1}{n}|\{k\leq n: |\alpha_{k+p}-\alpha_{k}|\geq{\varepsilon}\}|=0$ for each $\varepsilon>0$. A function $f$ is called statistically $p$-ward continuous on a subset $A$ of the set of real umbers $\mathbb{R}$ if it preserves statistically $p$-quasi-Cauchy sequences, i.e. the sequence $f(\textbf{x})=(f(\alpha_{n}))$ is statistically $p$-quasi-Cauchy whenever $\boldsymbol\alpha=(\alpha_{n})$ is a statistically $p$-quasi-Cauchy sequence of points in $A$. It turns out that a real valued function $f$ is uniformly continuous on a bounded subset $A$ of $\mathbb{R}$ if there exists a positive integer $p$ such that $f$ preserves statistically $p$-quasi-Cauchy sequences of points in $A$.

Publié le : 2019-01-01
DOI : https://doi.org/10.5269/bspm.v38i3.39991
@article{39991,
     title = {Variations on statistical quasi Cauchy sequences},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {38},
     year = {2019},
     doi = {10.5269/bspm.v38i3.39991},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/39991}
}
Cakalli, Huseyin. Variations on statistical quasi Cauchy sequences. Boletim da Sociedade Paranaense de Matemática, Tome 38 (2019) . doi : 10.5269/bspm.v38i3.39991. http://gdmltest.u-ga.fr/item/39991/