We study the capitulation of the 2-ideal classes of the field k =Q(\sqrt{p_1p_2q}, \sqrt{-1}), where p_1\equiv p_2\equiv-q\equiv1 \pmod 4 are different primes, in its three quadratic extensions contained in its absolute genus field k^{*} whenever the 2-class group of $\kk$ is of type $(2, 2, 2)$.
@article{36793, title = {On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq\_1q\_2}, i) of type (2, 2, 2)}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {38}, year = {2019}, doi = {10.5269/bspm.v38i4.36793}, language = {EN}, url = {http://dml.mathdoc.fr/item/36793} }
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed. On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2). Boletim da Sociedade Paranaense de Matemática, Tome 38 (2019) . doi : 10.5269/bspm.v38i4.36793. http://gdmltest.u-ga.fr/item/36793/