On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)
Azizi, Abdelmalek ; Zekhnini, Abdelkader ; Taous, Mohammed
Boletim da Sociedade Paranaense de Matemática, Tome 38 (2019), / Harvested from Portal de Periódicos da UEM

We study the capitulation of the 2-ideal classes of the field k =Q(\sqrt{p_1p_2q}, \sqrt{-1}), where p_1\equiv p_2\equiv-q\equiv1 \pmod 4  are different primes, in its three quadratic extensions contained in its absolute genus field k^{*} whenever the 2-class group of $\kk$ is of type $(2, 2, 2)$.

Publié le : 2019-01-01
DOI : https://doi.org/10.5269/bspm.v38i4.36793
@article{36793,
     title = {On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq\_1q\_2}, i) of type (2, 2, 2)},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {38},
     year = {2019},
     doi = {10.5269/bspm.v38i4.36793},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/36793}
}
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed. On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2). Boletim da Sociedade Paranaense de Matemática, Tome 38 (2019) . doi : 10.5269/bspm.v38i4.36793. http://gdmltest.u-ga.fr/item/36793/