Let $\mathca{I}$ be a proper $\sigma$-ideal of subsets of the real line.In a $\sigma$-field of Borel sets modulo sets from the $\sigma$-ideal $\mathca{I}$ we introduce an analogue of the saturated non-measurabilityconsidered by I. Halperin.Properties of ($\Beta \Delta \mathca{I}$,$\mathca{I}$)-saturated sets are investigated.M. Kuczma considered a problem how small or large a Hamel basis can be.We try tostudy this problem in the context of sets from I.
@article{353, title = {($\Beta \Delta \mathca{I}$,$\mathca{I}$)-saturated sets and Hamel basis}, journal = {Tatra Mountains Mathematical Publications}, volume = {62}, year = {2015}, doi = {10.2478/tatra.v62i0.353}, language = {EN}, url = {http://dml.mathdoc.fr/item/353} }
Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta. ($\Beta \Delta \mathca{I}$,$\mathca{I}$)-saturated sets and Hamel basis. Tatra Mountains Mathematical Publications, Tome 62 (2015) . doi : 10.2478/tatra.v62i0.353. http://gdmltest.u-ga.fr/item/353/