Let $\Omega\subset\R^N,$ be a bounded domain with smooth boundary. Let $g:\R^+\to\R^+$ be a continuous on $(0,+\infty)$ non-increasing and satisfying $$c_1=\liminf_{t\to 0^+}g(t)t^{\delta}\leq\underset{t\to 0^+}{\limsup} g(t)t^{\delta}=c_2,$$ for some $c_1,c_2>0$ and $0<\delta<1.$ Let $f(x,s) = h(x,s)e^{bs^{\frac{N}{N-1}}},$ $b>0$ is a constant.Consider the singular functional $I: W^{1,N}(\Omega)\to \R$ defined as \begin{eqnarray*}&&I(u)\eqdef\frac{1}{N}\|u\|^N_{W^{1,N}(\Omega)}-\int_{\Omega}G(u^+)\,{\rm d} x-\int_{\Omega}F(x,u^+) \,{\rm d} x\nonumber\\&& -\frac{1}{q+1}||u||^{q+1}_{L^{q+1}(\partial\Omega)}\nonumber\end{eqnarray*} where $F(x,u)=\int_0^sf(x,s)\,{\rm d}s$, $G(u)=\int_0^s g(s)\,{\rm d}s$. We show that if $u_0\in C^1(\overline{\Omega})$ satisfying $u_0\geq \eta \mbox{dist}(x,\partial\Omega)$, for some $0<\eta$, is a local minimum of $I$ in the $C^1(\overline{\Omega})\cap C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,N}(\Omega)$ topology. This result is useful %for proving multiple solutions to the associated Euler-lagrange equation ${\rm (P)}$ defined below.to prove the multiplicity of positive solutions to critical growth problems with co-normalboundary conditions.
@article{34741, title = {$W^{1,N}$ versus $C^1$ local minimizer for a singular functional with Neumann boundary condition}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {37}, year = {2017}, doi = {10.5269/bspm.v37i1.34741}, language = {EN}, url = {http://dml.mathdoc.fr/item/34741} }
Saoudi, Kamel. $W^{1,N}$ versus $C^1$ local minimizer for a singular functional with Neumann boundary condition. Boletim da Sociedade Paranaense de Matemática, Tome 37 (2017) . doi : 10.5269/bspm.v37i1.34741. http://gdmltest.u-ga.fr/item/34741/