We give a version of the Funk-Hecke formula that holds with minimal assumptonsand apply it to obtain formulas for the distributional derivatives of radialdistributions in Rn of the typeYkrj(f (r)) ;where Yk is a harmonic homogeneous polynomial. We show that such derivatives havesimpler expressions than those of the form pr(f (r)) for a general polynomial p:
@article{34198, title = {The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {37}, year = {2017}, doi = {10.5269/bspm.v37i3.34198}, language = {EN}, url = {http://dml.mathdoc.fr/item/34198} }
Estrada, Ricardo. The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions. Boletim da Sociedade Paranaense de Matemática, Tome 37 (2017) . doi : 10.5269/bspm.v37i3.34198. http://gdmltest.u-ga.fr/item/34198/