Various families of generating functions have been established by a number of authors in many different ways. In this paper, we aim at establishing (presumably new) a generating function for the extended second Appell hypergeometric function $F_{2} (a, b, b'; c, c'; x, y; p)$. Further we derive a relation in terms of the Laguerre polynomials and differentiation formulas. We also present special cases of the main results of this paper.
@article{30725, title = {Some generating functions and properties of extended second Appell function}, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {37}, year = {2017}, doi = {10.5269/bspm.v37i1.30725}, language = {EN}, url = {http://dml.mathdoc.fr/item/30725} }
Parmar, Rakesh K.; Purohit, Sunil Dutt. Some generating functions and properties of extended second Appell function. Boletim da Sociedade Paranaense de Matemática, Tome 37 (2017) . doi : 10.5269/bspm.v37i1.30725. http://gdmltest.u-ga.fr/item/30725/