On the stability of a class of cosine type functional equations
Rassias, John Michael ; Zeglami, Driss ; Charifi, Ahmed
Boletim da Sociedade Paranaense de Matemática, Tome 37 (2017), / Harvested from Portal de Periódicos da UEM

The aim of this paper is to investigate the stability problem for the pexiderized trigonometric functional equation    f₁(xy)+f₂(xσ(y))=2g₁(x)g₂(y),  x,y∈G,   where G is an arbitrary group, f₁,f₂,g₁ and g₂ are complex valued functions on G and σ is an involution of G. Results of this paper also can be extended to the setting of monoids (that is, a semigroup with identity) that need not be abelian.

Publié le : 2017-01-01
DOI : https://doi.org/10.5269/bspm.v37i2.29563
@article{29563,
     title = {On the stability of a class of cosine type functional equations},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {37},
     year = {2017},
     doi = {10.5269/bspm.v37i2.29563},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/29563}
}
Rassias, John Michael; Zeglami, Driss; Charifi, Ahmed. On the stability of a class of cosine type functional equations. Boletim da Sociedade Paranaense de Matemática, Tome 37 (2017) . doi : 10.5269/bspm.v37i2.29563. http://gdmltest.u-ga.fr/item/29563/