Properties at potential blow-up times for Navier-Stokes
Zingano, Paulo R. ; Lorenz, Jens
Boletim da Sociedade Paranaense de Matemática, Tome 35 (2016), / Harvested from Portal de Periódicos da UEM

In this paper we consider the Cauchy problem for the 3D navier-Stokes equations for incompressible flows. The initial data are assume d to be smooth and rapidly decaying at infinity. A famous open problem is whether classical solution can develop singularities in finite time. Assuming the maximal interval of existence to be finite, we give a unified discussion of various known solution properties as time approaches the blow-up time.

Publié le : 2016-01-01
DOI : https://doi.org/10.5269/bspm.v35i2.27508
@article{27508,
     title = {Properties at potential blow-up times for Navier-Stokes},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {35},
     year = {2016},
     doi = {10.5269/bspm.v35i2.27508},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/27508}
}
Zingano, Paulo R.; Lorenz, Jens. Properties at potential blow-up times for Navier-Stokes. Boletim da Sociedade Paranaense de Matemática, Tome 35 (2016) . doi : 10.5269/bspm.v35i2.27508. http://gdmltest.u-ga.fr/item/27508/