Simultaneous diophantine approximation in $\mathbb{R}^2 × \mathbb{C} × \mathbb{Q}_p$
Kovalevskaya, Ella
Tatra Mountains Mathematical Publications, Tome 55 (2013), / Harvested from Mathematical Institute

An analogue of the convergence part of Khintchine'stheorem (1924) for simultaneous approximation of integralpolynomials at the points$(x_1,x_2,z,w)\in\mathbb{R}^2\times\mathbb{C}\times\mathbb{Q}_p$ isproved. It is a solution of the more general problem thanSprind\u{z}uk's problem (1980) in the ring of adeles. We use a newform of the essential and nonessential domains method in metrictheory of Diophantine approximation.

Publié le : 2013-01-01
DOI : https://doi.org/10.2478/tatra.v56i0.247
@article{247,
     title = {Simultaneous diophantine approximation in $\mathbb{R}^2 $\times$ \mathbb{C} $\times$ \mathbb{Q}\_p$},
     journal = {Tatra Mountains Mathematical Publications},
     volume = {55},
     year = {2013},
     doi = {10.2478/tatra.v56i0.247},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/247}
}
Kovalevskaya, Ella. Simultaneous diophantine approximation in $\mathbb{R}^2 × \mathbb{C} × \mathbb{Q}_p$. Tatra Mountains Mathematical Publications, Tome 55 (2013) . doi : 10.2478/tatra.v56i0.247. http://gdmltest.u-ga.fr/item/247/