An analytic solution for one-dimensional dissipational strain-gradient plasticity
Young, Roger
ANZIAM Journal, Tome 50 (2009), / Harvested from Australian Mathematical Society

An analytic solution is developed for the one-dimensional dissipational slip gradient equation, first described by Gurtin.. [ " On the plasticity of single crystals; free energy, microforces, plastic strain-gradients", J.Mech. Phys. Solids 48 (200) 989-1036] and then investigate numerically by Annand et al, ["A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results". J. Mech.Phys. Solids 53 (2005) 1798-1826]. However, we find that the analytic solution is incompatible with the zero-sliprate boundary condition ("clamped boundary condition") postulated by these authors, and is in fact excluded by the theory. As a consequence, the analytic solution agrees with the numerical results except near the boundary. The equation also admits a series of higher mode solutions where the numerical result corresponds to (a particular case of) the fundamental mode. Anand et al also established that the one-dimensional dissipational gradients strengthen the material, but this proposition only holds if zero-sliprate boundary conditions can be imposed, which we have shown cannot be done. Hence the possibility remains open that dissipational gradient weakening may also occur. doi:10.1017/S1446181109000066

Publié le : 2009-01-01
DOI : https://doi.org/10.21914/anziamj.v50i0.2314
@article{2314,
     title = {An analytic solution for one-dimensional dissipational strain-gradient plasticity},
     journal = {ANZIAM Journal},
     volume = {50},
     year = {2009},
     doi = {10.21914/anziamj.v50i0.2314},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/2314}
}
Young, Roger. An analytic solution for one-dimensional dissipational strain-gradient plasticity. ANZIAM Journal, Tome 50 (2009) . doi : 10.21914/anziamj.v50i0.2314. http://gdmltest.u-ga.fr/item/2314/