Inthis paper, we investigate the asymptotic behavior of the solutions of aneutral type difference equation of the form\begin{equation*}\Delta \left[ x(n)+\sum_{j=1}^{w}c_{j}x(\tau _{j}(n))\right] +\left(-p(n)\right) x(\sigma (n))=0\text{, \ \ \ }n\geq 0\end{equation*}where $\tau _{j}(n),$ $j=1,...,w$ are general retarded arguments, $\sigma(n) $ is a general deviated argument, $c_{j}\in\mathbb{R}$, $j=1,...,w$ , $\left( p(n)\right) _{n\geq 0}$ is a sequence of positivereal numbers such that $p(n)\geq p$, $p\in\mathbb{R}_{+}$, and $\Delta $ denotes the forward difference operator $\Deltax(n)=x(n+1)-x(n)$.
@article{206,
title = {Convergence of the solutions for a neutral difference equation with negative coefficients},
journal = {Tatra Mountains Mathematical Publications},
volume = {55},
year = {2013},
doi = {10.2478/tatra.v54i0.206},
language = {EN},
url = {http://dml.mathdoc.fr/item/206}
}
Chatzarakis, G. E.; Miliras, G. N. Convergence of the solutions for a neutral difference equation with negative coefficients. Tatra Mountains Mathematical Publications, Tome 55 (2013) . doi : 10.2478/tatra.v54i0.206. http://gdmltest.u-ga.fr/item/206/