Distance Magic Strongly Regular Graphs
Simanjuntak, Rinovia ; Anuwiksa, Palton
arXiv, Tome 2019 (2019) no. 0, / Harvested from
A graph $G$ on $n$ vertices is said to be distance magic if there exists a bijection $f:V\rightarrow \{1,2, \ldots , n\}$ and a constant $k$ such that for any vertex $x$, $\sum_{y\in N(x)} f(y) = k$, where $N(x)$ is the set of all neighbours of $x$. In this paper we utilize spectra of graphs to characterize strongly regular graphs admitting distance magic labelings. In addition, we proved that a distance regular graph of diameter 3 is distance magic only if it is primitive.
Publié le : 2019-03-11
Classification:  Mathematics - Combinatorics,  05C12, 05C78
@article{1903.04459,
     author = {Simanjuntak, Rinovia and Anuwiksa, Palton},
     title = {Distance Magic Strongly Regular Graphs},
     journal = {arXiv},
     volume = {2019},
     number = {0},
     year = {2019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1903.04459}
}
Simanjuntak, Rinovia; Anuwiksa, Palton. Distance Magic Strongly Regular Graphs. arXiv, Tome 2019 (2019) no. 0, . http://gdmltest.u-ga.fr/item/1903.04459/