Distribution of colors in Gallai colorings
Gyárfás, András ; Pálvölgyi, Dömötör ; Patkós, Balázs ; Wales, Matthew
arXiv, Tome 2019 (2019) no. 0, / Harvested from
A Gallai coloring is an edge coloring that avoids triangles colored with three different colors. Given integers $e_1\ge e_2 \ge \dots \ge e_k$ with $\sum_{i=1}^ke_i={n \choose 2}$ for some $n$, does there exist a Gallai $k$-coloring of $K_n$ with $e_i$ edges in color $i$? In this paper, we give several sufficient conditions and one necessary condition to guarantee a positive answer to the above question. In particular, we prove the existence of a Gallai-coloring if $e_1-e_k\le 1$ and $k \le \lceil n/2\rceil$. We prove that for any integer $k\ge 3$ there exists a smallest $m$ (denoted by $g(k)$) such that if $\sum_{i=1}^ke_i={n \choose 2}$ for some $n\ge m$, then there exists a Gallai coloring of $K_n$ with $e_i$ edges in color $i$, but for every $3\le n
Publié le : 2019-03-11
Classification:  Mathematics - Combinatorics
@article{1903.04380,
     author = {Gy\'arf\'as, Andr\'as and P\'alv\"olgyi, D\"om\"ot\"or and Patk\'os, Bal\'azs and Wales, Matthew},
     title = {Distribution of colors in Gallai colorings},
     journal = {arXiv},
     volume = {2019},
     number = {0},
     year = {2019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1903.04380}
}
Gyárfás, András; Pálvölgyi, Dömötör; Patkós, Balázs; Wales, Matthew. Distribution of colors in Gallai colorings. arXiv, Tome 2019 (2019) no. 0, . http://gdmltest.u-ga.fr/item/1903.04380/