$(g,k)$-Fermat curves
Hidalgo, Ruben A.
arXiv, Tome 2019 (2019) no. 0, / Harvested from
Let $G$ be a co-compact torsion free Fuchsian group of genus $g \geq2$ and, for each integer $k \geq 2$, $G_{k}$ be its normal subgroup generated by the $k$-powers of the elements of $G$ together its commutators. There is a natural holomorphic embedding $\Theta_{k}:{\mathcal T}(G) \hookrightarrow {\mathcal T}(G_{k})$ of the corresponding Teichm\"uller spaces. If $\pi:{\mathcal T}(G) \to {\mathcal M}(G)$ and $\pi_{k}:{\mathcal T}(G_{k}) \to {\mathcal M}(G_{k})$ are the corresponding (branched) Galois covers over their moduli spaces, then there is a holomorphic map $\Phi_{k}:{\mathcal M}(G) \to {\mathcal M}(G_{k})$ such that $\pi_{k} \circ \Theta_{k}=\Phi_{k} \circ \pi$. The aim of this paper is to investigate where this last map is injective or not.
Publié le : 2019-02-08
Classification:  Mathematics - Complex Variables,  Mathematics - Algebraic Geometry,  30F10, 30F40, 14H37
@article{1902.03286,
     author = {Hidalgo, Ruben A.},
     title = {$(g,k)$-Fermat curves},
     journal = {arXiv},
     volume = {2019},
     number = {0},
     year = {2019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1902.03286}
}
Hidalgo, Ruben A. $(g,k)$-Fermat curves. arXiv, Tome 2019 (2019) no. 0, . http://gdmltest.u-ga.fr/item/1902.03286/