The equivalence principle for almost periodic functions
Righetti, M. ; Sepulcre, J. M. ; Vidal, T.
arXiv, Tome 2019 (2019) no. 0, / Harvested from
Given two arbitrary almost periodic functions, we prove that the existence of a common open vertical strip $V$, where both functions assume the same set of values on every open vertical substrip included in $V$, is a necessary and sufficient condition for both functions to have the same region of almost periodicity and to be $^*$-equivalent. This represents an improvement of previous results and it settles the problem of Bohr's equivalence theorem not having a converse.
Publié le : 2019-01-22
Classification:  Mathematics - Classical Analysis and ODEs,  Mathematics - Complex Variables,  Mathematics - Number Theory,  42A75, 30D20, 11J72, 11K60
@article{1901.07917,
     author = {Righetti, M. and Sepulcre, J. M. and Vidal, T.},
     title = {The equivalence principle for almost periodic functions},
     journal = {arXiv},
     volume = {2019},
     number = {0},
     year = {2019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1901.07917}
}
Righetti, M.; Sepulcre, J. M.; Vidal, T. The equivalence principle for almost periodic functions. arXiv, Tome 2019 (2019) no. 0, . http://gdmltest.u-ga.fr/item/1901.07917/