G-prime systems and the average order of the M\"{o}bius function
Neamah, Ammar Ali ; Hilberdink, Titus W
arXiv, Tome 2019 (2019) no. 0, / Harvested from
In this paper, we study the counting functions $M_\mathcal{P}(x)$, $\psi_\mathcal{P}(x)$ and $N_\mathcal{P}(x)$ of a generalized prime system $\mathcal{N}$. Here $M_\mathcal{P}(x)$ is the partial sum of the M\"{o}bius function over $\mathcal{N}$ not exceeding $x$. In particular, we study these when they are asymptotically well-behaved, in the sense that $N_{\cal{P}}(x) = \rho x+O({x^{ \beta+\eps }})$, $\psi_{\cal{P}}(x) = x+O({x^{ \alpha+\eps }})$ and $ M_\mathcal{P}(x) = O(x^{\gamma+\eps})$, for some $\rho >0$ and $\alpha, \beta, \gamma<1$. We show that the two largest of $\alpha,\beta,\gamma$ must be equal and at least $\frac{1}{2}$.
Publié le : 2019-01-21
Classification:  Mathematics - Number Theory
@article{1901.06866,
     author = {Neamah, Ammar Ali and Hilberdink, Titus W},
     title = {G-prime systems and the average order of the M\"{o}bius function},
     journal = {arXiv},
     volume = {2019},
     number = {0},
     year = {2019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1901.06866}
}
Neamah, Ammar Ali; Hilberdink, Titus W. G-prime systems and the average order of the M\"{o}bius function. arXiv, Tome 2019 (2019) no. 0, . http://gdmltest.u-ga.fr/item/1901.06866/