Behavior of multiple solutions for systems of semilinear elliptic equations
Hernández, Gastón E.
CUBO, A Mathematical Journal, (1995), 14 p. / Harvested from Cubo, A Mathematical Journal

In this work we present some partial results that will appear in a completed from in a forthcoming paper, [7]. We discuss the existence and particularly the multiplicity of solutions for the nonlinear system of elliptic equations.

Δui + λfi (x, u1, . . . um) = 0    in    Ω      (1.1)

uiǀ𝜃Ω = 0,    i = 1 , . . . , m                     (1.2)

Where fi (x, 0, . . . 0) > 0 for all x ⋲ Ω,  i = 1, 2, . . . , m. The functions fi,  i = 1, . . . , m, satisfy the quasimonotone condition and a certain blow up rate us to be made precise in the assumptions (H1) and (H2) below. Then results similar to those of the scalar equation case (see [6]) can be established. 

 

Publié le : 1995-09-01
@article{1816,
     title = {Behavior of multiple solutions for systems of semilinear elliptic equations},
     journal = {CUBO, A Mathematical Journal},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1816}
}
Hernández, Gastón E. Behavior of multiple solutions for systems of semilinear elliptic equations. CUBO, A Mathematical Journal,  (1995), 14 p. http://gdmltest.u-ga.fr/item/1816/