Existence and qualitative analysis for nonlinear weighted Choquard equations
Du, Lele ; Gao, Fashun ; Yang, Minbo
arXiv, 1810.11759 / Harvested from arXiv
The aim of this paper is to classify the solutions of the critical nonlocal equation with weighted nonlocal term $$-\Delta u =\frac{1}{|x|^{\alpha}}\left(\int_{\mathbb{R}^{N}}\frac{|u(y)|^{2_{\alpha,\mu}^{\ast}}} {|x-y|^{\mu}|y|^{\alpha}}dy\right)|u|^{2_{\alpha,\mu}^{\ast}-2}u\hspace{4.14mm}\mbox{in}\hspace{1.14mm} \mathbb{R}^{N} $$ and the subcritical case of the form $$-\Delta u+u =\frac{1}{|x|^{\alpha}}\left(\int_{\mathbb{R}^{N}}\frac{|u(y)|^{p}} {|x-y|^{\mu}|y|^{\alpha}}dy\right)|u|^{p-2}u\hspace{4.14mm}\mbox{in}\hspace{1.14mm} \mathbb{R}^{N}. $$ where $N\geq3$, $0<\mu
Publié le : 2018-10-28
Classification:  Mathematics - Analysis of PDEs,  35J15, 35J20, 35B06, 35B65
@article{1810.11759,
     author = {Du, Lele and Gao, Fashun and Yang, Minbo},
     title = {Existence and qualitative analysis for nonlinear weighted Choquard
  equations},
     journal = {arXiv},
     volume = {2018},
     number = {0},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1810.11759}
}
Du, Lele; Gao, Fashun; Yang, Minbo. Existence and qualitative analysis for nonlinear weighted Choquard
  equations. arXiv, Tome 2018 (2018) no. 0, . http://gdmltest.u-ga.fr/item/1810.11759/