Toda flow and intersections of Bruhat cells
Chernyakov, Yu. B. ; Sharygin, G. I ; Sorin, A. S. ; Talalaev, D. V.
arXiv, 1810.09622 / Harvested from arXiv
In this short note we show that the Bruhat cells in real normal forms of semisimple Lie algebras enjoy the same property as their complex analogs: \textit{for any two elements $w,w'$ in the Weyl group $W(\mathfrak g)$, the corresponding real Bruhat cell $X_w$ intersects with the dual Bruhat cell $Y_{w'}$ iff $w\prec w'$ in the weak Bruhat order on $W(\mathfrak g)$}. Here $\mathfrak g$ is a normal real form of a semisimple complex Lie algebra $\mathfrak g_\mathbb C$. Our reasoning is based on the properties of the Toda flows, rather than on the analysis of the Weyl group action and geometric considerations.
Publié le : 2018-10-22
Classification:  Mathematics - Representation Theory,  High Energy Physics - Theory,  Mathematical Physics,  Nonlinear Sciences - Exactly Solvable and Integrable Systems
@article{1810.09622,
     author = {Chernyakov, Yu. B. and Sharygin, G. I and Sorin, A. S. and Talalaev, D. V.},
     title = {Toda flow and intersections of Bruhat cells},
     journal = {arXiv},
     volume = {2018},
     number = {0},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1810.09622}
}
Chernyakov, Yu. B.; Sharygin, G. I; Sorin, A. S.; Talalaev, D. V. Toda flow and intersections of Bruhat cells. arXiv, Tome 2018 (2018) no. 0, . http://gdmltest.u-ga.fr/item/1810.09622/