A characterization of finite dimensional nilpotent Lie superalgebras
Nayak, Saudamini
arXiv, 1810.09129 / Harvested from arXiv
Let $L$ be a nilpotent Lie superalgebras of dimension $(m\mid n)$ for some non-negative integers $m$ and $n$ and put $s(L) = \frac{1}{2}[(m + n - 1)(m + n -2)]+ n+ 1 - \dim \mathcal{M}(L)$, where $\mathcal{M}(L)$ denotes the Schur multiplier of $L$. Recently, the author has shown that $s(L) \geq 0$ and the structure of all nilpotent Lie superalgebras has been determined when $s(L) = 0$ \cite{Nayak2018}. The aim of this paper is to classify all nilpotent Lie superalgebras $L$ for which $s(L) = 1$ and $2$.
Publié le : 2018-10-22
Classification:  Mathematics - Rings and Algebras,  17B30, 17B05
@article{1810.09129,
     author = {Nayak, Saudamini},
     title = {A characterization of finite dimensional nilpotent Lie superalgebras},
     journal = {arXiv},
     volume = {2018},
     number = {0},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1810.09129}
}
Nayak, Saudamini. A characterization of finite dimensional nilpotent Lie superalgebras. arXiv, Tome 2018 (2018) no. 0, . http://gdmltest.u-ga.fr/item/1810.09129/