Invariant states on Weyl algebras for the action of the symplectic group
Bambozzi, Federico ; Murro, Simone ; Pinamonti, Nicola
arXiv, 1802.02487 / Harvested from arXiv
For any number h such that hbar:=h/(2\pi) is irrational, let A_{g,h} be the corresponding Weyl *-algebra over Z^{2g} and consider the ergodic group of *-automorphisms of A_{g,h} induced by the action of Sp(2g,Z) on Z^{2g}. We show that the only Sp(2g,Z)-invariant state on A_{g,h} is the trace state.
Publié le : 2018-02-07
Classification:  Mathematics - Operator Algebras,  Mathematical Physics,  Mathematics - Functional Analysis,  Mathematics - Quantum Algebra,  46L30, 46L55, 58B34
@article{1802.02487,
     author = {Bambozzi, Federico and Murro, Simone and Pinamonti, Nicola},
     title = {Invariant states on Weyl algebras for the action of the symplectic group},
     journal = {arXiv},
     volume = {2018},
     number = {0},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1802.02487}
}
Bambozzi, Federico; Murro, Simone; Pinamonti, Nicola. Invariant states on Weyl algebras for the action of the symplectic group. arXiv, Tome 2018 (2018) no. 0, . http://gdmltest.u-ga.fr/item/1802.02487/