Heredity for triangular operators
Rhaly Jr., Henry Crawford
Boletim da Sociedade Paranaense de Matemática, Tome 31 (2013), / Harvested from Portal de Periódicos da UEM

A proof is given that if the lower triangular infinite matrix $T$ acts boundedly on $\ell^2$ and U is the unilateral shift, the sequence $(U^*)^nTU^n$ inherits from $T$ the following properties: posinormality, dominance, $M$-hyponormality, hyponormality, normality, compactness, and noncompactness.  Also, it is demonstrated that the upper triangular matrix $T^*$ is dominant if and only if $T$ is a diagonal matrix.

Publié le : 2013-01-01
DOI : https://doi.org/10.5269/bspm.v31i2.17928
@article{17928,
     title = {Heredity for triangular operators},
     journal = {Boletim da Sociedade Paranaense de Matem\'atica},
     volume = {31},
     year = {2013},
     doi = {10.5269/bspm.v31i2.17928},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/17928}
}
Rhaly Jr., Henry Crawford. Heredity for triangular operators. Boletim da Sociedade Paranaense de Matemática, Tome 31 (2013) . doi : 10.5269/bspm.v31i2.17928. http://gdmltest.u-ga.fr/item/17928/