We propose $q$-deformation of the Gamayun-Iorgov-Lisovyy formula for
Painlev\'e $\tau$ function. Namely we propose formula for $\tau$ function for
$q$-difference Painlev\'e equation corresponding to $A_7^{(1)}{}'$ surface (and
$A_1^{(1)}$ symmetry) in Sakai's classification. In this formula $\tau$
function equals the series of $q$-Virasoro Whittaker conformal blocks
(equivalently Nekrasov partition functions for pure $SU(2)$ 5d theory).
Publié le : 2016-08-08
Classification:
Mathematical Physics,
High Energy Physics - Theory,
Mathematics - Quantum Algebra,
Nonlinear Sciences - Exactly Solvable and Integrable Systems
@article{1608.02566,
author = {Bershtein, M. A. and Shchechkin, A. I.},
title = {Q-deformed Painleve tau function and q-deformed conformal blocks},
journal = {arXiv},
volume = {2016},
number = {0},
year = {2016},
language = {en},
url = {http://dml.mathdoc.fr/item/1608.02566}
}
Bershtein, M. A.; Shchechkin, A. I. Q-deformed Painleve tau function and q-deformed conformal blocks. arXiv, Tome 2016 (2016) no. 0, . http://gdmltest.u-ga.fr/item/1608.02566/