Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (𝑙𝑐𝑠)𝑛−manifolds
Yadav, S. K. ; Chaubey, S. K. ; Suthar, D. L.
CUBO, A Mathematical Journal, Tome 19 (2017), / Harvested from Cubo, A Mathematical Journal

In the context of para-contact Hausdorff geometry η−Ricci solitons and gradient Ricci solitons are considered on manifolds. We establish that on an (LCS)𝑛−manifold (M, ϕ, ξ, η, g), the existence of an η−Ricci soliton implies that (M, g) is quasi-Einstein. We find conditions for Ricci solitons on an (LCS)𝑛−manifold (M, ϕ, ξ, η, g) to be shrinking, steady and expanding. At the end we show examples of such manifolds with η−Ricci solitons.

Publié le : 2017-06-01
@article{1577,
     title = {Some geometric properties of e- Ricci solitons and gradient Ricci solitons on (lcs)n-manifolds},
     journal = {CUBO, A Mathematical Journal},
     volume = {19},
     year = {2017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1577}
}
Yadav, S. K.; Chaubey, S. K.; Suthar, D. L. Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (𝑙𝑐𝑠)𝑛−manifolds. CUBO, A Mathematical Journal, Tome 19 (2017) . http://gdmltest.u-ga.fr/item/1577/