Let (A, 𝜔) be a baric algebra, we define the E-ideal associated to the train polynomial p(𝓍) = 𝓍n + y1𝜔(𝓍)𝓍n-1 + ... + yn-1𝜔(𝓍)n-1𝓍, by the ideal EA(p) de A generated by all p(a), a ⋲ A. Different train polynomials may give rise to the same E-ideal. Two train polynomials p(𝓍) and q(𝓍) are equivalent when EA(p) = EA(q). We prove tbat for baric algebras satisfying (𝓍²)² = 𝜔(𝓍)³𝓍 there are 3 equivalence classes of train polynomials.
@article{1566, title = {Acerca de algebras baricas satisfaciendo (x2)2 = (x)3x}, journal = {CUBO, A Mathematical Journal}, year = {1992}, language = {en}, url = {http://dml.mathdoc.fr/item/1566} }
Catalán, Abdón; Costa, Roberto. Acerca de álgebras báricas satisfaciendo (𝓍²)² = 𝜔(𝓍)³𝓍. CUBO, A Mathematical Journal, (1992), 5 p. http://gdmltest.u-ga.fr/item/1566/