The Ravenel spectra T(m) for non-negative integers m interpolate between the sphere spectrum and the Brown-Peterson spectrum. Let L2 denote the Bousfield-Ravenel localization functor with respect to v2−1BP. In this paper, we determine the homotopy groups π∗(L2T(m) : ℤ/2) = [M2, L2T(m)]∗ for m > 1, where M2 denotes the modulo two Moore spectrum.
@article{1498,
title = {The Modulo Two Homotopy Groups of the L2-Localization of the Ravenel Spectrum},
journal = {CUBO, A Mathematical Journal},
volume = {10},
year = {2008},
language = {en},
url = {http://dml.mathdoc.fr/item/1498}
}
Ichigi, Ippei; Shimomura, Katsumi. The Modulo Two Homotopy Groups of the 𝐿₂-Localization of the Ravenel Spectrum. CUBO, A Mathematical Journal, Tome 10 (2008) . http://gdmltest.u-ga.fr/item/1498/