We prove L1 → L∞ dispersive estimates with a logarithmic loss of derivatives for the Schrödinger group eit(−Δ+V) for a class of real-valued potentials V ∈ C(n−3)/2(ℛn), V(x) = O(〈x〉−δ), where n = 4, 5, δ > 3 if n = 4 and δ > 5 if n = 5.
@article{1444,
title = {Dispersive Estimates for the Schr\"odinger Equation with Potentials of Critical Regularity},
journal = {CUBO, A Mathematical Journal},
volume = {11},
year = {2009},
language = {en},
url = {http://dml.mathdoc.fr/item/1444}
}
Cardoso, Fernando; Cuevas, Claudio; Vodev, Georgi. Dispersive Estimates for the Schrödinger Equation with Potentials of Critical Regularity. CUBO, A Mathematical Journal, Tome 11 (2009) . http://gdmltest.u-ga.fr/item/1444/