We generalize the “hamiltonian topology” on hamiltonian isotopies to an intrinsic “symplectic topology” on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo (M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω).
@article{1391, title = {On The Group of Strong Symplectic Homeomorphisms}, journal = {CUBO, A Mathematical Journal}, volume = {12}, year = {2010}, language = {en}, url = {http://dml.mathdoc.fr/item/1391} }
Banyaga, Augustin. On The Group of Strong Symplectic Homeomorphisms. CUBO, A Mathematical Journal, Tome 12 (2010) . http://gdmltest.u-ga.fr/item/1391/