We study the module amenability of Banach modules. This is a natural generalization of Johnson’s amenability of Banach algebras. As an example we show that for a discrete abelian group G, ℓp(G) is amenable as an ℓ1 (G)-module if and only if G is amenable, where ℓ1 (G) is a Banach algebra with pointwise multiplication.
@article{1375,
title = {Module amenability for Banach modules},
journal = {CUBO, A Mathematical Journal},
volume = {13},
year = {2011},
language = {en},
url = {http://dml.mathdoc.fr/item/1375}
}
Ebrahimi Bagha, D.; Amini, M. Module amenability for Banach modules. CUBO, A Mathematical Journal, Tome 13 (2011) . http://gdmltest.u-ga.fr/item/1375/