A standard way to parametrize the boundary of a connected fractal tile T is proposed. The parametrization is Hölder continuous from R/Z to ∂T and fixed points of ∂T have algebraic preimages. A class of planar tiles is studied in detail as sample cases and a relation with the recurrent set method by Dekking is discussed. When the tile T is a topological disk, this parametrization is a bi-Hölder homeomorphism.