Graded Morita equivalences for generic Artin-Schelter regular algebras
Ueyama, Kenta
Kyoto J. Math., Tome 51 (2011) no. 1, p. 485-501 / Harvested from Project Euclid
Let $A=\mathcal{A}(E,\sigma),A'=\mathcal{A}(E',\sigma')$ be Noetherian Artin-Schelter regular geometric algebras with $\operatorname{dim}_{k}A_{1}=\operatorname{dim}_{k}A_{1}'=n$ , and let $\nu,\nu'$ be generalized Nakayama automorphisms of $A,A'$ . In this paper, we study relationships between the conditions ¶ (A) $A$ is graded Morita equivalent to $A'$ , and ¶ (B) $\mathcal{A}(E,\nu^{*}\sigma^{n})$ is isomorphic to $\mathcal{A}(E',(\nu')^{*}(\sigma')^{n})$ as graded algebras. ¶ It is proved that if $A,A'$ are “generic” 3-dimensional quadratic Artin-Schelter regular algebras, then (A) is equivalent to (B), and if $A,A'$ are $n$ -dimensional skew polynomial algebras, then (A) implies (B).
Publié le : 2011-05-15
Classification:  16W50,  16D90,  16S38,  16S37
@article{1303494511,
     author = {Ueyama, Kenta},
     title = {Graded Morita equivalences for generic Artin-Schelter regular algebras},
     journal = {Kyoto J. Math.},
     volume = {51},
     number = {1},
     year = {2011},
     pages = { 485-501},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1303494511}
}
Ueyama, Kenta. Graded Morita equivalences for generic Artin-Schelter regular algebras. Kyoto J. Math., Tome 51 (2011) no. 1, pp.  485-501. http://gdmltest.u-ga.fr/item/1303494511/