Algebraic independence of infinite products generated by Fibonacci numbers
Kurosawa, Takeshi ; Tachiya, Yohei ; Tanaka, Taka-aki
Tsukuba J. Math., Tome 34 (2011) no. 2, p. 255-264 / Harvested from Project Euclid
The aim of this paper is to establish necessary and sufficient conditions for certain infinite products generated by Fibonacci numbers and by Lucas numbers to be algebraically independent.
Publié le : 2011-02-15
Classification:  infinite products,  algebraic independence,  Mahler-type functional equation,  Fibonacci numbers,  11J81,  11J85
@article{1302268248,
     author = {Kurosawa, Takeshi and Tachiya, Yohei and Tanaka, Taka-aki},
     title = {Algebraic independence of infinite products generated by
 Fibonacci numbers},
     journal = {Tsukuba J. Math.},
     volume = {34},
     number = {2},
     year = {2011},
     pages = { 255-264},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1302268248}
}
Kurosawa, Takeshi; Tachiya, Yohei; Tanaka, Taka-aki. Algebraic independence of infinite products generated by
 Fibonacci numbers. Tsukuba J. Math., Tome 34 (2011) no. 2, pp.  255-264. http://gdmltest.u-ga.fr/item/1302268248/