Dunkl-Williams inequality for operators associated with $p$-angular distance
Dadipour, Farzad ; Fujii, Masatoshi ; Moslehian, {Mohammad Sal
Nihonkai Math. J., Tome 21 (2010) no. 1, p. 11-20 / Harvested from Project Euclid
We present several operator versions of the Dunkl--Williams inequality with respect to the $p$-angular distance for operators. More precisely, we show that if $A, B \in \mathbb{B}(\mathscr{H})$ such that $|A|$ and $|B|$ are invertible, $\frac{1}{r}+\frac{1}{s}=1$ $(r>1)$ and $p\in\mathbb{R}$, then ¶ \begin{equation*} \left|\,A|A|^{p-1}-B|B|^{p-1}\,\right|^{2} \leq |A|^{p-1}\left(\,r|A-B|^{2}+s\left|\,|A|^{1-p}|B|^{p}-|B|\,\right|^2\,\right)|A|^{p-1}.%\nonumber \end{equation*} ¶ In the case that $0 < p \leq 1$, we remove the invertibility assumption and show that if $A=U|A|$ and $B=V|B|$ are the polar decompositions of $A$ and $B$, respectively, $t>0$, then ¶ $$\left|\,\left(U|A|^{p}-V|B|^{p}\right)|A|^{1-p}\,\right|^{2}\leq \left(1+t\strut\right)|A-B|^{2}+\left(1+\frac{1}{t}\right) \left| |B|^{p}|A|^{1-p}-|B| \right|^2 .$$ ¶ We obtain several equivalent conditions, when the case of equalities hold.
Publié le : 2010-05-15
Classification:  Dunkl-Williams inequality,  $p$-angular distance,  operator parallelogram law,  47A63,  26D15
@article{1302268213,
     author = {Dadipour, Farzad and Fujii, Masatoshi and Moslehian, {Mohammad Sal},
     title = {Dunkl-Williams inequality for operators associated with $p$-angular distance},
     journal = {Nihonkai Math. J.},
     volume = {21},
     number = {1},
     year = {2010},
     pages = { 11-20},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1302268213}
}
Dadipour, Farzad; Fujii, Masatoshi; Moslehian, {Mohammad Sal. Dunkl-Williams inequality for operators associated with $p$-angular distance. Nihonkai Math. J., Tome 21 (2010) no. 1, pp.  11-20. http://gdmltest.u-ga.fr/item/1302268213/