A ternary characterization of automorphisms of ${\mathbb B}({\mathscr H})$
Jelodar, Ali Taghavi ; Moslehian, Mohammad Sal ; Sanami, Abolfazl
Nihonkai Math. J., Tome 21 (2010) no. 1, p. 1-9 / Harvested from Project Euclid
If ${\mathscr H}$ is a Hilbert space, $\varphi$ is a (not necessary linear) $*$-surjective mapping on ${\mathbb B}({\mathscr H})$ and $\varphi$ preserves the spectrum of operators of the form $ABA^{*}$, then $\varphi$ is either an algebra automorphism or an algebra anti-automorphism.
Publié le : 2010-05-15
Classification:  Spectrum,  rank one operator,  trace functional,,  operator algebra,  automorphism,  anti-automorphism,  47B49,  46L05,  47L30
@article{1302268212,
     author = {Jelodar, Ali Taghavi and Moslehian, Mohammad Sal and Sanami, Abolfazl},
     title = {A ternary characterization of automorphisms of ${\mathbb B}({\mathscr H})$},
     journal = {Nihonkai Math. J.},
     volume = {21},
     number = {1},
     year = {2010},
     pages = { 1-9},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1302268212}
}
Jelodar, Ali Taghavi; Moslehian, Mohammad Sal; Sanami, Abolfazl. A ternary characterization of automorphisms of ${\mathbb B}({\mathscr H})$. Nihonkai Math. J., Tome 21 (2010) no. 1, pp.  1-9. http://gdmltest.u-ga.fr/item/1302268212/