Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators
Breuer, Jonathan ; Last, Yoram ; Strauss, Yosef
Duke Math. J., Tome 156 (2011) no. 1, p. 425-460 / Harvested from Project Euclid
We prove dynamical upper bounds for discrete one-dimensional Schrödinger operators in terms of various spacing properties of the eigenvalues of finite-volume approximations. We demonstrate the applicability of our approach by a study of the Fibonacci Hamiltonian.
Publié le : 2011-04-15
Classification:  81Q10,  47B36
@article{1301678729,
     author = {Breuer, Jonathan and Last, Yoram and Strauss, Yosef},
     title = {Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schr\"odinger operators},
     journal = {Duke Math. J.},
     volume = {156},
     number = {1},
     year = {2011},
     pages = { 425-460},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1301678729}
}
Breuer, Jonathan; Last, Yoram; Strauss, Yosef. Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators. Duke Math. J., Tome 156 (2011) no. 1, pp.  425-460. http://gdmltest.u-ga.fr/item/1301678729/