Blaschke products with derivative in function spaces
Protas, David
Kodai Math. J., Tome 34 (2011) no. 1, p. 124-131 / Harvested from Project Euclid
Let B be a Blaschke product with zeros {an}. If B′ $\in$ Apα for certain p and α, it is shown that Σn (1 - |an|)β < ∞ for appropriate values of β. Also, if {an} is uniformly discrete and if B′ $\in$ Hp or B′ $\in$ A1+p for any p $\in$ (0,1), it is shown that Σn (1 - |an|)1-p < ∞.
Publié le : 2011-03-15
Classification: 
@article{1301576766,
     author = {Protas, David},
     title = {Blaschke products with derivative in function spaces},
     journal = {Kodai Math. J.},
     volume = {34},
     number = {1},
     year = {2011},
     pages = { 124-131},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1301576766}
}
Protas, David. Blaschke products with derivative in function spaces. Kodai Math. J., Tome 34 (2011) no. 1, pp.  124-131. http://gdmltest.u-ga.fr/item/1301576766/