The Phragmén Lindelöf condition for evolution for quadratic forms
Boiti, Chiara ; Meise, Reinhold
Funct. Approx. Comment. Math., Tome 44 (2011) no. 1, p. 111-131 / Harvested from Project Euclid
Let $P \in \mathbb{C}[\tau, \zeta_1, \ldots, \zeta_n]$ be a quadratic polynomial for which the $\tau$-variable is non-characteristic. We characterize when the zero-variety $V(P)$ of $P$ satisfies the Phragmén-Lindelöf condition $PL(\omega)$ or equivalently when the pair $(\mathbb{R}_x^n, \mathbb{R}_\tau \times \mathbb{R}_x^n)$ is of evolution in the class ${\mathcal E}_\omega$ for the partial differential operator $P(D)$ with symbol $P$.
Publié le : 2011-03-15
Classification:  Phragmén-Lindelöf conditions,  ultradifferentiable functions,  differential equations of evolution,  32U05,  35E99,  35L99
@article{1301497749,
     author = {Boiti, Chiara and Meise, Reinhold},
     title = {The Phragm\'en Lindel\"of condition for evolution for quadratic forms},
     journal = {Funct. Approx. Comment. Math.},
     volume = {44},
     number = {1},
     year = {2011},
     pages = { 111-131},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1301497749}
}
Boiti, Chiara; Meise, Reinhold. The Phragmén Lindelöf condition for evolution for quadratic forms. Funct. Approx. Comment. Math., Tome 44 (2011) no. 1, pp.  111-131. http://gdmltest.u-ga.fr/item/1301497749/