Global structure of some ultradistributions
Schmets, Jean ; Valdivia, Manuel
Funct. Approx. Comment. Math., Tome 44 (2011) no. 1, p. 63-78 / Harvested from Project Euclid
Given $p \in \mathbb{N}$, a non empty open subset $\Omega$ of $\mathbb{R}^k$ and a semi-regular matrix $\mathfrak{M}$, we characterize the elements of the duals of the Beurling classes $\mathcal{D}{(\mathfrak{M})}{\Omega}$ and $\\mathcal{D}_{L_p}{(\mathfrak{M})}{\Omega}$ of ultradifferentiable functions. We provide a global representation of these ultradistributions with and without compact support by means of series involving measures in the first case and elements of $\L_{loc}^{q}{\Omega}$ in the second.
Publié le : 2011-03-15
Classification:  countable intersection,  non quasi-analytic class,  ultradifferentiable function,  ultradistribution,  ultradistribution,  46F05,  46F20
@article{1301497747,
     author = {Schmets, Jean and Valdivia, Manuel},
     title = {Global structure of some ultradistributions},
     journal = {Funct. Approx. Comment. Math.},
     volume = {44},
     number = {1},
     year = {2011},
     pages = { 63-78},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1301497747}
}
Schmets, Jean; Valdivia, Manuel. Global structure of some ultradistributions. Funct. Approx. Comment. Math., Tome 44 (2011) no. 1, pp.  63-78. http://gdmltest.u-ga.fr/item/1301497747/