An integral test for the transience of a Brownian path with limited local time
Benjamini, Itai ; Berestycki, Nathanaël
Ann. Inst. H. Poincaré Probab. Statist., Tome 47 (2011) no. 1, p. 539-558 / Harvested from Project Euclid
We study a one-dimensional Brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function f(t), t≥0, consider the measures μt obtained by conditioning a Brownian path so that Ls≤f(s), for all s≤t, where Ls is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t→∞ is transient provided that t−3/2f(t) is integrable. We conjecture that this condition is sharp and present a number of open problems.
Publié le : 2011-05-15
Classification:  Brownian motion,  Conditioning,  Local time,  Entropic repulsion,  Integral test,  Transience,  Recurrence,  60G17,  60J65,  60K37
@article{1300887281,
     author = {Benjamini, Itai and Berestycki, Nathana\"el},
     title = {An integral test for the transience of a Brownian path with limited local time},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {47},
     number = {1},
     year = {2011},
     pages = { 539-558},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1300887281}
}
Benjamini, Itai; Berestycki, Nathanaël. An integral test for the transience of a Brownian path with limited local time. Ann. Inst. H. Poincaré Probab. Statist., Tome 47 (2011) no. 1, pp.  539-558. http://gdmltest.u-ga.fr/item/1300887281/