Uniqueness and approximate computation of optimal incomplete transportation plans
Álvarez-Esteban, P. C. ; del Barrio, E. ; Cuesta-Albertos, J. A. ; Matrán, C.
Ann. Inst. H. Poincaré Probab. Statist., Tome 47 (2011) no. 1, p. 358-375 / Harvested from Project Euclid
For α∈(0, 1) an α-trimming, P, of a probability P is a new probability obtained by re-weighting the probability of any Borel set, B, according to a positive weight function, f≤1/(1−α), in the way P(B)=∫Bf(x)P(dx). ¶ If P, Q are probability measures on Euclidean space, we consider the problem of obtaining the best L2-Wasserstein approximation between: (a) a fixed probability and trimmed versions of the other; (b) trimmed versions of both probabilities. These best trimmed approximations naturally lead to a new formulation of the mass transportation problem, where a part of the mass need not be transported. We explore the connections between this problem and the similarity of probability measures. As a remarkable result we obtain the uniqueness of the optimal solutions. These optimal incomplete transportation plans are not easily computable, but we provide theoretical support for Monte-Carlo approximations. Finally, we give a CLT for empirical versions of the trimmed distances and discuss some statistical applications.
Publié le : 2011-05-15
Classification:  Incomplete mass transportation problem,  Multivariate distributions,  Optimal transportation plan,  Similarity,  Trimming,  Uniqueness,  Trimmed probability,  CLT,  49Q20,  60A10,  60B10,  28A50
@article{1300887273,
     author = {\'Alvarez-Esteban, P. C. and del Barrio, E. and Cuesta-Albertos, J. A. and Matr\'an, C.},
     title = {Uniqueness and approximate computation of optimal incomplete transportation plans},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {47},
     number = {1},
     year = {2011},
     pages = { 358-375},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1300887273}
}
Álvarez-Esteban, P. C.; del Barrio, E.; Cuesta-Albertos, J. A.; Matrán, C. Uniqueness and approximate computation of optimal incomplete transportation plans. Ann. Inst. H. Poincaré Probab. Statist., Tome 47 (2011) no. 1, pp.  358-375. http://gdmltest.u-ga.fr/item/1300887273/