Cutpoints and resistance of random walk paths
Benjamini, Itai ; Gurel-Gurevich, Ori ; Schramm, Oded
Ann. Probab., Tome 39 (2011) no. 1, p. 1122-1136 / Harvested from Project Euclid
We construct a bounded degree graph G, such that a simple random walk on it is transient but the random walk path (i.e., the subgraph of all the edges the random walk has crossed) has only finitely many cutpoints, almost surely. We also prove that the expected number of cutpoints of any transient Markov chain is infinite. This answers two questions of James, Lyons and Peres [A Transient Markov Chain With Finitely Many Cutpoints (2007) Festschrift for David Freedman]. ¶ Additionally, we consider a simple random walk on a finite connected graph G that starts at some fixed vertex x and is stopped when it first visits some other fixed vertex y. We provide a lower bound on the expected effective resistance between x and y in the path of the walk, giving a partial answer to a question raised in [Ann. Probab. 35 (2007) 732–738].
Publié le : 2011-05-15
Classification:  Graph,  random walk,  path,  cutpoints,  60D05,  60G50
@article{1300281734,
     author = {Benjamini, Itai and Gurel-Gurevich, Ori and Schramm, Oded},
     title = {Cutpoints and resistance of random walk paths},
     journal = {Ann. Probab.},
     volume = {39},
     number = {1},
     year = {2011},
     pages = { 1122-1136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1300281734}
}
Benjamini, Itai; Gurel-Gurevich, Ori; Schramm, Oded. Cutpoints and resistance of random walk paths. Ann. Probab., Tome 39 (2011) no. 1, pp.  1122-1136. http://gdmltest.u-ga.fr/item/1300281734/