$L_p$ compression, traveling salesmen, and stable walks
Naor, Assaf ; Peres, Yuval
Duke Math. J., Tome 156 (2011) no. 1, p. 53-108 / Harvested from Project Euclid
We show that if $H$ is a group of polynomial growth whose growth rate is at least quadratic, then the $L_p$ compression of the wreath product $\mathbb{Z}\bwr H$ equals \[{\rm max}\left\{\frac{1}{p},\frac{1}{2}\right\}\] . We also show that the $L_p$ compression of $\mathbb{Z}\bwr \mathbb{Z}$ equals \[{\rm max}\left\{\frac{p}{2p-1},\frac23\right\} \] and that the $L_p$ compression of $(\mathbb{Z}\bwr\mathbb{Z})_0$ (the zero section of $\mathbb{Z}\bwr \mathbb{Z}$ , equipped with the metric induced from $\mathbb{Z}\bwr \mathbb{Z}$ ) equals \[{\rm max}\left\{\frac{p+1}{2p},\frac34\right\} \] . The fact that the Hilbert compression exponent of $\mathbb{Z}\bwr\mathbb{Z}$ equals $2/3$ while the Hilbert compression exponent of $(\mathbb{Z}\bwr\mathbb{Z})_0$ equals $3/4$ is used to show that there exists a Lipschitz function $f:(\mathbb{Z}\bwr\mathbb{Z})_0\to L_2$ which cannot be extended to a Lipschitz function defined on all of $\mathbb{Z}\bwr \mathbb{Z}$ .
Publié le : 2011-03-15
Classification:  20F65,  51F99
@article{1300281533,
     author = {Naor, Assaf and Peres, Yuval},
     title = {$L\_p$ compression, traveling salesmen, and stable walks},
     journal = {Duke Math. J.},
     volume = {156},
     number = {1},
     year = {2011},
     pages = { 53-108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1300281533}
}
Naor, Assaf; Peres, Yuval. $L_p$ compression, traveling salesmen, and stable walks. Duke Math. J., Tome 156 (2011) no. 1, pp.  53-108. http://gdmltest.u-ga.fr/item/1300281533/