A technique for computing the PDFs and CDFs of nonnegative infinitely divisible random variables
Veillette, Mark S. ; Taqqu, Murad S.
J. Appl. Probab., Tome 48 (2011) no. 1, p. 217-237 / Harvested from Project Euclid
We present a method for computing the probability density function (PDF) and the cumulative distribution function (CDF) of a nonnegative infinitely divisible random variable X. Our method uses the Lévy-Khintchine representation of the Laplace transform Ee-λX = e-ϕ(λ), where ϕ is the Laplace exponent. We apply the Post-Widder method for Laplace transform inversion combined with a sequence convergence accelerator to obtain accurate results. We demonstrate this technique on several examples, including the stable distribution, mixtures thereof, and integrals with respect to nonnegative Lévy processes.
Publié le : 2011-03-15
Classification:  Infinitely divisible distribution,  Post-Widder formula,  stable distribution,  stochastic integration,  60E07,  65C50,  60-08,  60-04
@article{1300198146,
     author = {Veillette, Mark S. and Taqqu, Murad S.},
     title = {A technique for computing the PDFs and CDFs of nonnegative infinitely divisible random variables},
     journal = {J. Appl. Probab.},
     volume = {48},
     number = {1},
     year = {2011},
     pages = { 217-237},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1300198146}
}
Veillette, Mark S.; Taqqu, Murad S. A technique for computing the PDFs and CDFs of nonnegative infinitely divisible random variables. J. Appl. Probab., Tome 48 (2011) no. 1, pp.  217-237. http://gdmltest.u-ga.fr/item/1300198146/