Further calculations for the McKean stochastic game for a spectrally negative é process: from a point to an interval
Baurdoux, E. J. ; Van Schaik, K.
J. Appl. Probab., Tome 48 (2011) no. 1, p. 200-216 / Harvested from Project Euclid
Following Baurdoux and Kyprianou (2008) we consider the McKean stochastic game, a game version of the McKean optimal stopping problem (American put), driven by a spectrally negative Lévy process. We improve their characterisation of a saddle point for this game when the driving process has a Gaussian component and negative jumps. In particular, we show that the exercise region of the minimiser consists of a singleton when the penalty parameter is larger than some threshold and `thickens' to a full interval when the penalty parameter drops below this threshold. Expressions in terms of scale functions for the general case and in terms of polynomials for a specific jump diffusion case are provided.
Publié le : 2011-03-15
Classification:  Stochastic game,  optimal stopping,  é process,  fluctuation theory,  60G40,  91A15
@article{1300198145,
     author = {Baurdoux, E. J. and Van Schaik, K.},
     title = {Further calculations for the McKean stochastic game for a spectrally negative \'e process: from a point to an interval},
     journal = {J. Appl. Probab.},
     volume = {48},
     number = {1},
     year = {2011},
     pages = { 200-216},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1300198145}
}
Baurdoux, E. J.; Van Schaik, K. Further calculations for the McKean stochastic game for a spectrally negative é process: from a point to an interval. J. Appl. Probab., Tome 48 (2011) no. 1, pp.  200-216. http://gdmltest.u-ga.fr/item/1300198145/