On the quasi-equivalence of orthogonal bases in non-archimedean metrizable locally convex spaces
Śliwa, Wiesław
Bull. Belg. Math. Soc. Simon Stevin, Tome 9 (2002) no. 4, p. 465-472 / Harvested from Project Euclid
We prove that any non-Archimedean metrizable locally convex space $E$ with a regular orthogonal basis has the quasi-equivalence property, i.e. any two orthogonal bases in $E$ are quasi-equivalent. In particular, the power series spaces $A_1(a)$ and $A_\infty(a)$, the most known and important examples of non-Archimedean nuclear Fréchet spaces, have the quasi-equivalence property. We also show that the Fréchet spaces: ${\Bbb K}^{\Bbb N},c_0\times{\Bbb K}^{\Bbb N},c^{\Bbb N}_0$ have the quasi-equivalence property.
Publié le : 2002-05-15
Classification:  quasi-equivalence property,  non-archimedean Frechet spaces,  orthogonal bases,  46S10,  46A04,  46A35
@article{1298991753,
     author = {\'Sliwa, Wies\l aw},
     title = {On the quasi-equivalence of orthogonal bases in non-archimedean metrizable locally convex spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {9},
     number = {4},
     year = {2002},
     pages = { 465-472},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1298991753}
}
Śliwa, Wiesław. On the quasi-equivalence of orthogonal bases in non-archimedean metrizable locally convex spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 9 (2002) no. 4, pp.  465-472. http://gdmltest.u-ga.fr/item/1298991753/