Semi-classical Analysis of a Conjoint Crossing of Three Symmetric Modes
Kammerer, Clotilde Fermanian ; Rousse, Vidian
Methods Appl. Anal., Tome 17 (2010) no. 1, p. 137-164 / Harvested from Project Euclid
In this article we focus on a semiclassical Schrödinger equation with matrix-valued potential presenting a symmetric conjoint crossing of three eigenvalues. The potential we consider is well-known in the chemical literature as a pseudo Jahn-Teller potential. We analyze the energy transfers which occur between the three modes in terms of Wigner measures.
Publié le : 2010-06-15
Classification:  Semi-classical analysis,  Born-Oppenheimer approximation,  Schrödinger equation,  Wigner measures,  eigenvalue crossings,  35Q40,  81Q20,  35B27
@article{1298298164,
     author = {Kammerer, Clotilde Fermanian and Rousse, Vidian},
     title = {Semi-classical Analysis of a Conjoint Crossing of Three Symmetric Modes},
     journal = {Methods Appl. Anal.},
     volume = {17},
     number = {1},
     year = {2010},
     pages = { 137-164},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1298298164}
}
Kammerer, Clotilde Fermanian; Rousse, Vidian. Semi-classical Analysis of a Conjoint Crossing of Three Symmetric Modes. Methods Appl. Anal., Tome 17 (2010) no. 1, pp.  137-164. http://gdmltest.u-ga.fr/item/1298298164/