Random walks on the mapping class group
Maher, Joseph
Duke Math. J., Tome 156 (2011) no. 1, p. 429-468 / Harvested from Project Euclid
We show that a random walk on the mapping class group of an orientable surface gives rise to a pseudo-Anosov element with asymptotic probability one. Our methods apply to many subgroups of the mapping class group, including the Torelli group.
Publié le : 2011-02-15
Classification:  37E30,  20H10,  60G50,  20F65
@article{1297258906,
     author = {Maher, Joseph},
     title = {Random walks on the mapping class group},
     journal = {Duke Math. J.},
     volume = {156},
     number = {1},
     year = {2011},
     pages = { 429-468},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1297258906}
}
Maher, Joseph. Random walks on the mapping class group. Duke Math. J., Tome 156 (2011) no. 1, pp.  429-468. http://gdmltest.u-ga.fr/item/1297258906/